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Abstract 
 

This paper describes an approach to use an adapted Evolution Strategies (ES) algorithm to generate improved 
sequences for producing unique parts in a flow shop.  The algorithm uses principles from both genetic algorithms 
and Evolution Strategies. While several alternative algorithms were considered, the focus of this paper is on the one 
that performed the best for this problem domain.  The best algorithm is an ES that implements a new mapping 
technique (Genotype-Phenotype) to convert its real-valued gene representation into a valid job sequence.  The 
approach also uses production heuristics to generate the initial set of sequences, thus providing a better starting point 
and accelerating the optimization process.  The fitness of each sequence generated by the algorithm is evaluated by a 
discrete-event simulation model of the flow shop.  The algorithm and simulation model are a part of a decision-
support system that was developed to optimize ship panel construction at Northrop Grumman Ship Systems.  A 
design-of-experiments approach is used to configure the efficiency of the algorithm for different problem sizes. This 
analysis helps select the optimal set of parameters. This paper includes details of routines and provides results from 
various optimization runs. 
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1. Introduction 
The flow-shop scheduling problem (FSP) is a well-known problem found in many manufacturing applications. The 
FSP is known to be NP-Complete for relatively large, n job, m machine problems. Due to its complexity it is 
necessary to use heuristic approaches to solve the problem. Algorithms and heuristics developed to solve flow shop 
problems include Johnson’s rule (for a 2 machine problem), tabu search, simulated annealing and genetic 
algorithms. Evolutionary computing (EC) is widely used in similar combinatorial problems; ample contributions are 
present in literature for solving the traveling salesman problem (TSP), a similar combinatorial problem. However, 
only few EC solution approaches for solving FSP have been developed. This paper presents an adapted Evolutionary 
Strategies (ES) solution approach to the FSP. This optimization algorithm is part of an elaborate decision support 
system (DSS) developed for Northrop Grumman Ship Systems. A panel shop responsible for manufacturing 
components for ships is considered for experimentation and the actual workflow is evaluated using a discrete-event 
simulation model of the shop. The following sections provide details on the ES approach, implementation, and 
results. 
 
2. Evolutionary Computation Methods 
Evolutionary computation methods are heuristics that seek optimum solutions by mimicking biological evolution 
processes. These methods use the survival of the fittest principle to promote evolution over generations. Each 
generation consists of individuals, collectively known as a population. Each individual is a representation of the 
parameters related to the fitness function. The representation of an individual is called a chromosome and is 
analogous to chromosomes present in living cells that control characteristics of an organism. The best individuals in 
a population are selected as parents to breed the next generation. The new population members compete within 
themselves and the best individuals are selected again. This process of selection combined with sporadic mutation 
contributes to the progression of the population towards the global optimum. Evolutionary computation is a broad 



term that envelops all methods mimicking evolution; different methods have been proposed and developed over the 
years. Genetic Algorithm (GA) and Evolution Strategies (ES) are just two of the more popular methods.  
 
The GA is a method that uses binary values in its chromosome to represent the variable values; it was proposed by 
Holland [1] and further developed by Goldberg [2]. The GA uses crossover and mutation operators to create a new 
set of individuals. GAs though effective, lack speed and efficiency when compared to more recent methods. A GA 
requires very large population sizes and the binary chromosome representation increases the length, thereby 
reducing efficiency. Crossover is considered to be the major evolution factor in the GA with mutation preventing the 
algorithm from being trapped in a local optimum. Various adaptations have been developed to solve specific 
problems, such as the TSP, and some adaptations have integer representations with special crossover and mutation 
operators. 
 
The ES proposed by Schewfel [3, 4] is based on a real-value representation of variables and is generally used to 
optimize mathematical functions. An ES operates using real-value objective function variables by applying 
recombination (crossover) and mutation [6].  A solution is represented in a gene format, consisting of function 
variables and strategy parameters. An ES defines and uses a strategy parameter for every variable present in the 
objective function. The gene resembles an array of size 2n, where n is the number of variables in the objective 
function that need to be optimally determined. The first set of n values corresponds to the variables and the next n 
values form the strategy parameters. Function variables represent the solution, whereas the strategy parameters help 
the algorithm traverse the solution space more effectively by mutating function variables. The mutation is a simple 
neighborhood search process where the given variable value is modified by adding or subtracting a normal variate 
based on the variable value and the strategy parameter. Mutation plays the main role in the ES optimization process 
to improve the population and avoid being trapped in local optima.  In general, ES are considered to be more 
efficient and faster than GA implementations and work with small population sizes.  
 
In an EC algorithm each gene is associated with a fitness value; the value is evaluated by using the variable values 
from the gene and substituting it in the objective function. The EC operates with just the evaluated value and has no 
knowledge of the objective function. Thus any problem with configurable parameters can be optimized using an EC 
approach. A fitness-based selection process is used, where all the population members are sorted based on their 
fitness values and the best members are selected to be the parents for the next generation. The best is dependent on 
the minimization or maximization goal. Other more complex tournament-type selections can be used where every 
individual in the population competes with randomly-chosen individuals and population members are selected based 
on the number of wins. The selection process also involves a critical decision, i.e., elitism, which influences the 
behavior of the algorithm. Elitism, in general, means giving preference to higher individuals; in evolutionary 
terminology it means giving preference to the best individuals regardless of its age. This enables the parents to 
compete with the offspring and have a chance for survival. If elitism is allowed in an EC, a good solution will 
survive through generations and will be selected to produce more offspring. However elitism can also lead to an 
early convergence to local optima. In ES terminology, elitism is denoted by the notation (µ+λ) where µ denotes the 
number of parent solutions and λ denotes the number of offspring. The ‘+’ represents that the selection process will 
consider both parents and offspring. The non-elitist strategy is represented by (µ,λ).  
 
Both the GA and ES have been used in different problem domains and have established their significance in the field 
of optimization. Several modifications of the basic approaches have been proposed and implemented to address 
specific problems. Large combinatorial problems, such as the FSP and TSP, are routinely solved using modified GA 
methods. On the other hand, ES methods have limited application in solving combinatorial problems. In one case, 
Rudolph [5] uses a mapping technique for applying ES to solve a TSP problem, but no research could be found 
where an ES was used to solve a FSP problem. Even though TSP and FSP are different problem formulations with 
different constraints, they appear identical from the EC perspective. Both problems, when formulated for any EC 
method, essentially represent a non-repetitive integer sequence, which forms either the travel route or the job 
sequence. This similarity lead to the adaptation of an ES to solve the FSP problem, details of this implementation are 
provided in the next section. 
  
3. Optimization Approach 
The objective of a flow shop problem is to find the best sequence in which to process jobs through the flow shop. 
“Best” is evaluated in terms of the throughput of the shop; i.e., produce a given set of jobs through the flow shop in 



the shortest time possible, given the operational, physical, and programmatic restrictions. The jobs need to be 
processed on a single series of machines and are processed in the same order as they enter the system. Personnel and 
machine resources and space limitations control the pace of production.   
 
An ES algorithm is employed to “optimize” the flow shop-sequencing problem. The core algorithm is described in 
the following pseudo code: 

 
1. START 
2. Generate initial population 

(a) Randomly generate values for variables 
(b) Initialize strategy parameters for each variable  
(c) Evaluate initial population 

3. Generate next generation 
(a) Select two parent members at random  
(b) Create an offspring solution by selecting each variable value from either of the parent’s corresponding 

variable (discrete recombination) 
(c) Define strategy parameters for the offspring as an average of the corresponding two parent values 
(d) Mutate strategy parameters 
(e) Mutate each variable of the offspring based on the new strategy parameter 

4. Evaluate the objective function 
5. Sort the solutions 
6. Repeat from Steps 3 through 5 until the desired tolerance is achieved 
7. END 

 
The basic ES algorithm needs to be modified in order to implement it on an FSP. Modifications include a mapping 
scheme, fitness function, seeding the initial population, and parameter adjustments. The behavior of the algorithm 
can be controlled by adjusting a set of parameters including: initial strategy parameter values, parent to offspring 
ratio, elitism, maximum number of generations and tolerance. The stopping criterion is either the maximum number 
of generations or a tolerance that is defined as the difference between the best solution fitness and the average fitness 
of parent solutions. All parameters are accessed through a configuration file, thereby enabling the end user to 
calibrate the algorithm as required for different problems. This section provides details on these modifications. 
 
Since the FSP involves sequences of non-repetitive integers that are used to represent a job sequence, a new form of 
representation or translation is required. The GA chromosome can be easily modified to be represented as a set of 
integers; however, a similar approach to the ES is not possible. Rudolph [6] solved a TSP by obtaining a valid 
sequence from a set of real numbers using the idea of Genotype and Phenotype mapping to develop an encoding and 
decoding process. Phenotype can be defined as the observable traits of an organism which are caused by a specific 
gene combination or structure called the genotype. In simpler terms, the phenotype is all that can be seen and the 
genotype is the more complex structure well hidden in the organism that controls the characteristics. Since the 
fitness function is related to behavior, a proper genotype to phenotype mapping will ensure that an accurate fitness 
evaluation is made. The adaptation of the ES lies in the encoding scheme which allows the ES to operate on its real 
values while being translated to relevant information for the actual problem. The solution or chromosome values are 
not altered in this process, a new array of numbers corresponding to the sequence is generated which is passed out of 
the algorithm for fitness evaluation. Once the fitness values for all solutions are found they are applied back to the 
population and then sorted for the selection process.  
 
Encoding is achieved by assigning randomly-generated numbers [0,1) to the given sequence after sorting.  The 
assignment ensures that the lowest number is assigned to the lowest job identifier, and proceeds until all integers are 
mapped.  As shown in the example in Table 1, a set of random numbers (0.482, 0.002, 0.945, 0.205, 0.567) is sorted 
in ascending order (0.002, 0.205, 0.482, 0.567, 0.945) and assigned to the original set of integers according to rank. 
Since the algorithm is designed to pass the complete real-value solution set to the next generation, there is no need 
for any future encoding.  Encoding is performed only for the initial parent population. 

 
Table 1. Encoding example. 

Input Sequence (Input) 5 1 2 4 3 
Encoded Chromosome (Output) 0.945 0.002 0.205 0.567 0.482 



Decoding of the chromosome is performed by assigning ranks to the set of real values present in the chromosome 
that represents the objective function variables. As shown in the small example in Table 2, the lowest number is 
assigned an index value 1. Index value 2 is assigned to the next lowest number and this process continues until all of 
the real values are numbered. If a tie in ranking exists, then a random assignment is made. This ranking process can 
be simplified by using the array index value after the real value set is sorted in ascending order. Ranking ensures that 
no duplicates are created. This encoding and decoding process does not disturb the original chromosome consisting 
of the variable and mutation parameters.  
 

Table 2. Decoding example. 
Chromosome Values (Input) 0.345 0.683 0.125 0.567 0.001 
Decoded Sequence (Output) 3 5 2 4 1 

 
An objective function value is associated with each gene, in the case of the FSP, this objective function value is the 
makespan (in days) to complete all jobs. Complex objective functions can also be defined by incorporating 
additional measures like tardiness. Due dates, if present, can be used to measure tardiness and added to the 
makespan for use by the optimizer as it attempts to minimize or maximize this objective function as required. The 
fitness values are used in the selection process, the basic fitness-based selection of and ES is retained. Another 
decision parameter, elitism, is to be defined for the selection process. Both (µ+λ) and (µ,λ) strategies are built into 
the algorithm and a configuration parameter that is defined by the user enables the selection. 
 
Generally, initial population members are generated randomly in order to enable a wide range of solutions.  
However, a totally random start will delay the algorithm convergence. Therefore, in order to achieve faster 
improvement, the initial population is generated using established efficient heuristic scheduling rules.  A similar 
process of seeding the initial population was also used by Reeves [6], where one of the random initial population 
members is replaced with a heuristic solution. Reeves employed the NEH algorithm from Nawaz, et al. [7] and 
showed that this seeding process significantly reduces the time to find an optimal solution. The seeding approach 
was adopted in the ES implementation where, common scheduling algorithms such as Shortest Processing Time 
(SPT), Earliest Due Date (EDD) and Critical Ratio (CR) are used for generating additional starting solutions. The 
SPT orders components according to their expected processing time. SPT is near optimal for finding the minimum 
total completion time and weighted completion time. The EDD provides a sequence based on component due dates 
and effectively reduces tardiness. The CR is the ratio of the time remaining to the work remaining; it works well on 
minimizing average lateness. The solutions provided by the heuristics may not be optimal, but provide a more 
efficient starting point for the search. More solutions than the required initial population can be provided as input to 
the optimizer algorithm, and then the algorithm will evaluate all solutions and select the required number of best 
solutions to form the initial population. This enables the user to employ similar heuristics to generate a broader set 
of solutions.  
 
4. Implementation 
The optimization algorithm is developed as part of a DSS for the panel shop that is considered to be the bottleneck 
for the shipyard [8]. The shop fabricates and assembles “panels” which are major components that are used in all 
ships. The panel shop primarily operates as an assembly line; each panel goes through the same sequence of 
processing steps, although the work content varies greatly at each step. The panels are composed of very large plates 
of steel which are unique and vary considerably in terms of their physical attributes and work content. The panel 
shop is essentially a flow shop; however the problem is highly complicated with the consideration of due dates, 
dynamic resources and high variability. A static model formulation will not truly represent the complexity of the 
system. However, a simulation model adequately captures the dynamics of the panel shop. The simulation model is 
an accurate representation of the original system consisting of all resources (people and machines) and operations 
logic and parameters that approximate the behavior of the shop. Each sequence generated by the ES optimization 
algorithm is processed by the discrete-event simulation model.  The simulation model is used to evaluate the 
objective function. The number of days late and makespan are calculated from the simulation model output and are 
used by the optimizer as it attempts to optimize this objective function. It is observed that the optimizer primarily 
focuses on reducing tardiness. This behavior is attributed to the fact that the bottleneck of the panel shop is an 
automated process and there is little time variation possible in the makespan with changes in schedule. The DSS 
controls and coordinates the operation of the simulation model and the optimization algorithm.  
 



It has also been observed that the algorithm has to be adjusted for achieving the best performance for different 
problem sizes. Since there are many configuration parameters that can be set at numerous levels, a perfect 
combination cannot be defined without further analysis. To study the effect of each of these parameters a design-of-
experiments approach is suggested by Ruiz, Maroto and Alcaraz [9], where statistical analyses are performed to 
select the best combination of parameter values using results obtained from a quick limited run. The parameter 
values are then used for obtaining the global optimum, for the Taillard FSP problem set [10], by allowing the 
optimizer to run longer.  
 
In order to provide a faster optimization algorithm a similar study is performed. A complete factorial design between 
the factors: number of parent solutions µ, parent-offspring ratio λ/µ, initial strategy parameter values, and elitist 
strategy, is evaluated. The simulation model is not used for this experiment, a simple code segment (math model) is 
employed to evaluate the makespan of a sequence for a given flow shop problem data. The math model functions as 
a simple flow shop and does not consider variability, due dates and other problem specific restrictions. Researchers 
have commonly used the Taillard FSP test set [10] for the evaluation of their algorithms. Selected problem instances 
from the same data set are used in this experiment. Three problem sets of 20, 100 and 200 jobs are used. A full 
factorial design is setup with 8x8x6x2 treatment combinations for the factors defined earlier respectively. The 
statistical analysis shows some critical interaction effects between the type of elitist strategy and the initial sigma 
values used. Only these two factors and their interaction significantly affect the optimization performance. In 
general the (µ+λ) strategy performed better than the (µ,λ) strategy. As the number of panels increases, a reduction 
in the initial strategy parameter values improved convergence. Table 3 shows suggested values of configuration 
parameters for different problem sizes. This experiment can be extended to derive a regression model where in the 
parameters can be defined from the problem data and then used in the optimizer.  
 

Table 3. Configuration parameter suggestions based on experimental analysis 
Number of Jobs 

 
Initial strategy 

parameter 
Elitist strategy Number of parents Parent – offspring 

ratio 
20 0.05 to 0.1 (µ,λ) >6 >6 
100 0.001 (µ+λ) >4 >7 
200 0.001 (µ+λ) >4 >5 

 
5. Results 
The algorithm is evaluated using six sets of panels of increasing quantity. The original schedule, Earliest Start Date 
(ESD), which the panel shop currently uses, is defined as the base schedule. This base schedule is used to generate 
three schedules using heuristics.  Then each of these schedules is evaluated using the simulation model. The fitness 
value, a combination of makespan and the total tardiness, for each are collected and the optimizer is allowed to run 
for 100 generations. The optimizer disables variability and only evaluates one replication in the simulation model for 
each sequence during the optimization process. Once the best solution is determined, it is evaluated for multiple 
replications in the simulation model and the fitness value is collected. Table 4 presents the fitness values of the 
initial population and the final best solution, for 1 replication and 25 replications.  
 

Table 4: Comparison of fitness between heuristics and ES algorithm. 
  ESD (Base) EDD SPT CR OPT Best : OPT % Base : OPT % 
Reps/ 
Panels 

1 25 1 25 1 25 1 25 1 25 1 25 1 25 

20 1.61 1.25 1.43 1.15 1.61 1.25 1.68 1.33 1.00 1.00 29.99 13.30 37.91 19.89 
50 1.79 1.19 1.47 1.19 1.79 1.19 2.31 1.79 1.00 1.00 31.90 15.66 44.02 16.19 
100 1.80 1.59 1.16 1.01 1.79 1.59 2.65 2.18 1.00 1.00 13.64 1.04 44.47 37.05 
150 1.73 1.64 1.11 1.02 1.75 1.62 2.89 2.84 1.00 1.00 9.50 1.66 42.07 39.12 
200 2.03 1.80 1.23 1.14 1.92 1.77 2.95 2.57 1.00 1.00 18.98 11.99 50.73 44.50 
250 1.96 1.70 1.14 1.06 1.84 1.65 2.73 2.32 1.00 1.00 12.65 5.71 49.09 41.06 

 
The data has been normalized within each row. Data for both replications is presented in order to make a 
comparison between the final outcome of the ES and the initial solutions provided. The comparison has to be made 
between data of the same replication count. Variability plays a major role in increasing the make-span; this effect 



reduces the quality of the fitness value when replicated. The Best : OPT and Base : OPT columns show the 
percentage improvement the optimizer achieved over the best of the initial solutions and the base solution 
respectively. It is obtained using the relationship (initial best – final best)/ final best.   
 
As shown in Table 4, the ES optimizer outperformed all of the heuristics. A comparison between the heuristics 
shows that the EDD fares better than the base schedule and other heuristics.  The trend in increasing improvement of 
the optimizer over the base case as the number of panels increase can be attributed to longer schedule time periods. 
The longer time periods may provide enough flexibility to reduce tardiness by changing the production sequence. 
EDD if employed will lead to better solutions as tardiness is part of the objective function. However to achieve 
higher improvements the optimization algorithm is recommended. The results shown are based on a single instance 
and hence do not represent a problem size. All schedules having 100 panels, for example, may not produce the same 
improvement results. This is primarily due to high variation in work content of the panels. 
 
6. Conclusion 
An evolution strategies algorithm is developed for solving a dynamic flow shop problem for a specific shipbuilding 
application. A real-valued ES algorithm is modified to use a mapping technique to produce valid job sequences and 
to use heuristic solutions as the initial population. This technique enables the optimization features of ES to be 
applied to a combinatorial problem. The optimization approach is developed, tested, and imbedded in a DSS for use 
in a real manufacturing shop problem. Statistical analyses are used to set different configuration parameters for the 
ES algorithm to achieve faster and better results. A full factorial design is used for this purpose. The algorithm 
through the DSS provided better schedules as an alternate to their existing ones. The DSS also provides a chance to 
evaluate any changes, using the model, before actual implementation. The optimizer is built in a generic, adaptable 
form, which enables it to be integrated and used with similar problems seamlessly. Further research includes 
experimental methods to simplify decision making in setting parameter values, provision of additional mutation and 
crossover options, and methods to improve convergence rates. 
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